Error Estimation for the Linearized Auto-Localization Algorithm

نویسندگان

  • Jorge I. Guevara Rosas
  • Antonio Ramón Jiménez
  • José Carlos Prieto
  • Fernando Seco Granja
چکیده

The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons' positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On improving APIT algorithm for better localization in WSN

In Wireless Sensor Networks (WSNs), localization algorithms could be range-based or range-free. The Approximate Point in Triangle (APIT) is a range-free approach. We propose modification of the APIT algorithm and refer as modified-APIT. We select suitable triangles with appropriate distance between anchors to reduce PIT test errors (edge effect and non-uniform placement of neighbours) in APIT a...

متن کامل

A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion

This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...

متن کامل

A multi-hop PSO based localization algorithm for wireless sensor networks

A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...

متن کامل

Mobile Robot Camera Extrinsic Parameters Auto Calibration by Spiral Motion

Self-localization in robotics is still a challenging task for both indoor and outdoor mobile robotic systems. The main reason is various sources of sensors and calculation errors that summarizes into a general position estimation error. While it is rather common to use some external landmarks to prevent error accumulation over time the sensors themselves used for landmark detection are signific...

متن کامل

Alonzo Kelly Linearized Error Propagation in Odometry

The related fields of mobile robotics and ground vehicle localization lack a linearized theory of odometry error propagation. By contrast, the equivalent Schuler dynamics which apply to inertial guidance have been known and exploited for decades. In this paper, the general solution of linearized propagation dynamics of both systematic and random errors for vehicle odometry is developed and vali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012